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SUMMARY

In this article we analyze the problem of the thermal coupling of fluids and solids through a common inter-
face. We state the global thermal problem in the whole domain, including the fluid part and the solid part.
This global thermal problem presents discontinuous physical properties that depend on the solution of
auxiliary problems on each part of the domain (a fluid flow problem and a solid state problem). We present
a domain decomposition strategy to iteratively solve problems posed in both subdomains and discuss some
implementation aspects of the algorithm. This domain decomposition framework is also used to revisit
the use of wall function approaches used in this context. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem we analyze in this article is that of the thermal coupling of fluids and solids. This
problem is found in any engineering design in which a fluid is used to extract heat from a solid
(refrigeration, ventilation, etc.). In fact, many experimental correlations are available [1] in the
form of convection coefficients. The objective of this article is to present a domain decomposition
approach that permits the separated treatment of a problem in the solid domain and of a problem in
the fluid one. Let us emphasize that it is not our intention to use a domain decomposition strategy
to perform parallel computations but to treat problems with different physics separately. Moreover,
this domain decomposition approach will allow us to implement the thermal coupling problem in
a master–slave algorithm.

The model presented in Section 2 is based on the solution of a thermal problem in the whole
domain � that includes the solid subdomain �S and the fluid subdomain �F separated by the
interface �SF which could be, in principle, a moving surface. The differential operators that describe
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1182 J. PRINCIPE AND R. CODINA

the evolution of the temperature (ϑ) are different as a result of different physics and they depend
on other variables that describe the state of each medium. On each subdomain the thermal problem
could be coupled to other differential problems depending on the physical model used for the fluid
and solid. In the first case we may have a compressible flow or an incompressible one, a mix
of species, chemical reactions, etc. In the second case we may have a purely thermal problem, a
thermomechanical one or even a thermo-hygro-mechanical one as in [2]. Any model can be used
on each subdomain but we will assume that the coupling between the fluid and solid is only due
to heat exchange. In the case in which mechanical problems are solved on each subdomain, this
assumption is equivalent to assume that

1. the velocities of the solid medium are small and
2. the mechanical traction produced by the fluid on the solid is small.

It will be shown in Section 2 how these conditions result in the uncoupling of the mechanical
problems. We will also assume that the displacements of the solid medium are small enough to
consider the interface �SF fixed.

The numerical approximation of the fluid and solid problems is in general different. One
important feature of our approach is that different numerical approximations could be used to
solve each problem. In the case of the fluid we use a stabilized finite element formulation based
on the subgrid scale concept. Each field is decomposed into a resolvable and a subgrid scale
part according to the finite element partition, and the effect of the subgrid scale on the coarse
scale is taken into account by an algebraic approximation. This approach allows us to deal with
convection-dominated problems and to use equal-order interpolation of velocity and pressure,
which would lead to numerical instabilities when a standard Galerkin formulation is used. The
Galerkin approximation is used to solve the solid problem. We describe the discrete formulation
in Section 3 but we emphasize once again that any other possibility could be used.

The possibility of using different models and different discrete approximations is not only
theoretical but also practical. The coupling through the common interface between the solid and
the fluid is accomplished by the transmission conditions, which we consider of Dirichlet/Neumann
type. This leads to a non-overlapping domain decomposition problem that we implement in an
iteration-by-subdomain strategy. The solution of each thermal problem, in the fluid and in the solid
regions, and the transmission of boundary conditions from one domain to the other is done by
a relatively small master code. This code, developed following the MPI 2 standard, is in charge
of managing the subdomain iterative coupling and the time-marching loops. In this way, each
dedicated code acts as a slave and can be updated separately as only minor modifications are needed
to change the information with the master code. These implementation aspects are described in
Section 4. The domain decomposition framework for the thermal coupling described, together with
its implementation aspects and an interpretation of the use of wall function approaches, is the main
contribution of this work.

Finally, the approach is illustrated in a simple one-dimensional example and is applied to the
simulation of a fire in a tunnel in Section 5. Some conclusions are drawn in Section 6.

2. CONTINUOUS PROBLEM

We consider a thermal problem in a domain � composed of two subdomains �S and �F, as illus-
trated in Figure 1 (left and center). First, we present the problem in the whole domain considering

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1181–1201
DOI: 10.1002/fld



THERMAL COUPLING OF FLUIDS AND SOLIDS 1183

Figure 1. Domain of the problem.

discontinuous physical properties, which include the density (�), the specific heat (cp) and the
diffusion coefficient (�=k/�cp, where k is the thermal conductivity), as well as a velocity field
(v). This velocity field will be assumed to be solution of a mechanical problem defined also in the
whole domain and having also discontinuous properties. The constitutive relations in the fluid and
in the solid are different, the former relating the stress tensor (r) to the velocity gradients and the
latter relating the stress tensor to the deformation gradient.

Once the problem in the whole domain has been expressed, we will present two different
strategies for a domain decomposition approach to this problem. The first strategy presented
consists of a standard non-overlapping domain decomposition of the problem into the fluid and
solid subdomains. We will assume that the mechanical problem in the solid does not depend on
that in the fluid, in a sense to be made precise later on. We will refer to this approach as the full
resolution strategy.

The second strategy consists of a non-overlapping domain decomposition of the problem in
three subdomains, one in the solid region and two in the fluid region, as illustrated in Figure 1
(right). One of the fluid subdomains will be a thin region of thickness � near the solid surface and
the other will be the rest of the fluid domain. The purpose of this second approach is to consider
the problem of the strong boundary layers present in a turbulent flow using the wall function
approach. An approximated solution of the problem in this thin region is expressed in terms of the
wall function and an iteration strategy between the remaining subdomains is proposed. Therefore,
this second approach will also involve two subdomains. We again assume that the mechanical
problems are uncoupled. We will refer to this approach as the wall function strategy.

2.1. Problem definition in the whole domain

2.1.1. Strong form of the problem. The problem to be solved in �, an open domain in Rd (d=2,3
is the number of space dimensions) during the time interval (0, tf) is described by the equations of
continuous media. Although a complex model can be used [2] the set of equations always contain
an energy conservation statement that, under suitable assumptions, reads

�cp(�tϑ+v ·∇ϑ)+∇ ·q=Q in �×(0, tf) (1)

where Q is the external source of energy source per unit of mass and q is the internal heat flux
vector. The velocity field v is the solution of a mechanical problem of the form

�(�tv+v ·∇v)−∇ ·r=�g in �×(0, tf)

where g is the external source of momentum per unit of mass and r the internal stress tensor. The
parameters present in these equations (� and cp) may be discontinuous across the surface �SF.
The constitutive equation for the internal heat flux is

q=−k∇ϑ (2)
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where k may also be discontinuous across �SF. The constitutive equation for the internal stress
tensor will in general be different in both regions. In the case of the solid it will be related to the
deformation tensor. In the case of an incompressible fluid it will be related to the velocity gradient
and to another variable, the pressure (p), that will involve the solution of another equation, the
conservation of mass. The problem must be supplemented with appropriate boundary and initial
conditions, which can be expressed as

ϑ=ϑ0 in �×{0}
ϑ=ϑD on �ϑ

D×(0, tf)

n·q=qN on �ϑ
N×(0, tf)

where �ϑ
D (�ϑ

N) represent the part of the domain boundary where Dirichlet (Neumann) boundary
conditions for the temperature are prescribed, ��=�ϑ

D∪�ϑ
N and n is the exterior normal to the

domain �. In turn, the initial and boundary conditions for the mechanical problem depend on
the constitutive relation considered. In the case of a solid, they are usually expressed in terms of
the displacement and in the case of the fluid in terms of the velocity. The purpose of expressing the
mechanical problem is to clearly specify the conditions under which it is uncoupled. Nevertheless,
we will consider the weak form and the numerical approximation of the thermal problem only.

2.1.2. Weak form of the problem. As usual we denote by H1(�) the space of functions whose first-
order derivatives belong to L2(�), the space of square-integrable functions in �, by 〈u,v〉� =∫

� u v

and by (u,v)� the scalar product in L2(�). The space of H1(�) functions that satisfy Dirichlet
boundary conditions will be denoted by V ϑ (V 0 for zero Dirichlet boundary conditions). The weak
form of the problem consists in finding ϑ∈L2(0, tf;V ϑ)∩L∞(0, tf; L2(�)) such that

a(ϑ,v)= l(v) ∀v∈V 0 (3)

where L2(0, tf;V ϑ) is the set of functions whose norm in V ϑ (which is the norm in H1(�))
is square integrable in time, and L∞(0, tf; L2(�)) the set of functions whose norm in L2(�) is
bounded in time. The bilinear form a and the linear form l are defined as

a(ϑ,v) :=(�cp�tϑ,v)�+(�cpv ·∇ϑ,v)�+(k∇ϑ,∇v)�

and

l(v) :=〈Q,v〉�+〈qN,v〉�ϑ
N

respectively (in fact, a is affine in the first argument, but we will omit this precision in the
following).

2.2. The full resolution strategy

A standard non-overlapping domain decomposition of the problem is obtained by splitting the
domain � into the solid and fluid subdomains, �S and �F, as illustrated in Figure 1 (center), where
the notation that we will use is indicated.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1181–1201
DOI: 10.1002/fld



THERMAL COUPLING OF FLUIDS AND SOLIDS 1185

2.2.1. Strong form of the problem. The strong form of the problem consists in finding temperatures
ϑS and ϑF, as well as velocities vF (in the fluid) and displacements uS (in the solid), such that

�ScpS�tϑS+∇ ·qS=QS in �S×(0, tf)

−∇ ·rS=�g in �S×(0, tf)

and

�FcpF(�tϑF+vF ·∇ϑF)+∇ ·qF=QF in �F×(0, tf)

�F(�tvF+vF·∇vF)−∇ ·rF=�g in �F×(0, tf)

Here we have used Assumption 1 of Section 1 to neglect the terms containing the velocity of the
solid. For the sake of simplicity in the exposition, accelerations have also been neglected (quasi-
static problem). The conditions to be satisfied at the interface are the continuity of the temperatures
and velocities as well as the normal components of heat fluxes and tractions that read

vF|�SF =vS|�SF = u̇S|�SF

nF ·rF|�SF =−nS ·rS|�SF

and

ϑF|�SF =ϑS|�SF

nF ·qF|�SF =−nS ·qS|�SF

where now nS (nF) is the normal exterior to the domain �S (�F). At this point Assumptions 1
and 2 of Section 1 yield u̇S≈0 and nF ·rF|�SF ≈0, respectively. With these approximations the
interface conditions become

vF|�SF =0

nS ·rS|�SF =0

and

ϑF|�SF =ϑS|�SF

nF ·qF|�SF =−nS ·qS|�SF

and therefore the mechanical problems are uncoupled.

2.2.2. Weak form of the problem. Let us introduce the bilinear forms aS defined on the solid
subdomain �S as

aS(ϑ,v) :=(�ScpS�tϑS,v)�S +(kS∇ϑS,∇v)�S

and on the fluid subdomain �F as

aF(ϑ,v) :=(�FcpF�tϑF,v)�F +(�FcpFvF ·∇ϑF,v)�F +(kF∇ϑF,∇v)�F
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1186 J. PRINCIPE AND R. CODINA

We also introduce the linear forms

lS(v) :=〈QS,v〉�S +〈qN,v〉�ϑ
NS

and

lF(v) :=〈QF,v〉�F +〈qN,v〉�ϑ
NF

The weak form of the problem consists in finding

ϑS∈L2(0, tf;V ϑ
S )∩L∞(0, tf; L2(�S))

ϑF∈L2(0, tf;V ϑ
F )∩L∞(0, tf; L2(�F))

such that

aS(ϑ,v)−〈kSnS ·∇ϑS,v〉�SF = lS(v) ∀v∈V 0
S

aF(ϑ,v)−〈kFnF ·∇ϑF,v〉�SF = lF(v) ∀v∈V 0
F

ϑF = ϑS on �SF

kFnF ·∇ϑF|�SF = −kSnS ·∇ϑS|�SF on �SF

(4)

where the spaces V ϑ
S and V 0

S (respectively, V ϑ
F and V 0

F ) are defined in the same manner as V ϑ

and V 0 but considering �ϑ
DS (respectively, �ϑ

DF) instead of �ϑ
D.

2.3. The wall function strategy

Now we use again a standard non-overlapping domain decomposition of the problem but splitting
the domain � into the solid subdomain �S, a boundary layer in the fluid �B and the rest of the
fluid subdomain �F, as illustrated in Figure 1 (right). In addition, let �SB be the interface between
�S and �B, and �BF be the interface between �B and �F. Apart from the equations given in the
previous subsection for the solid and the fluid subdomains, we now need to solve the problem
on the boundary layer subdomain, which consists in finding a temperature ϑB and a velocity vB
such that

�cp(�tϑB+vB ·∇ϑB)+∇ ·qB=QB (5)

�(�tvB+vB ·∇vB)−∇ ·rB=�g (6)

Under the same assumptions as in the previous subsection the interface conditions are

vB|�SB =0

nS ·rS|�SB =0

ϑB|�SB =ϑS|�SB

nB ·qB|�SB =−nS ·qS|�SB
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THERMAL COUPLING OF FLUIDS AND SOLIDS 1187

and

vF|�BF =vB|�BF

nF ·rF|�BF =−nB ·rB|�BF

ϑF|�BF =ϑB|�BF

nF ·qF|�BF =−nB ·qB|�BF

If the boundary layer is of constant width, one may assume that its normal satisfies

nB|�SB =−nB|�BF

The problem on the boundary layer subdomain is now approximately solved using the wall function
approach, which is described next.

2.3.1. Wall function revisited. The so-called wall function approach is a method for the approxi-
mate solution of the fluid mechanics problems with strong boundary layers. These boundary layers
are removed from the computational domain and universal velocity profiles are used to define the
boundary condition in terms of the boundary conditions on the solid surface, as shown in Figure 2.
This approximated solution is found assuming negligible inertial terms and external forces. From
(5) and (6) it is seen that this yields

∇ ·qB=0

∇ ·rB=0

which imply constant stresses and heat fluxes across the boundary layer. Now, we denote as q the
normal component of the heat flux

q=nB ·qB|�SB

and as t the tangential stress

t=n·rB−(n·rB ·n)n|�SB

Figure 2. A wall function approach.
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1188 J. PRINCIPE AND R. CODINA

evaluated at the wall. The mechanical problem is solved selecting a local coordinate system such
that the first local direction is t. If we denote by � the norm of the tangential component of the
stress (not to be confused with the full stress tensor), by uB the component of the velocity in this
system and by y the coordinate normal to the solid surface, the constitutive equations are

q=(k+kt)
dϑB

dy
(7)

�=(�+�t)
duB
dy

(8)

where �t and kt are the turbulent viscosity and conductivity. Given the turbulent viscosity and
conductivity we can integrate (7) and (8) to obtain the velocity and temperature profiles. The
definition of the turbulent viscosity and conductivity is the definition of the model we are using
to approximate the problem and is based on experimental correlations [3]. One of these models
is the one that results in the logarithmic profiles for the velocity and temperature. This model is
based on the existence of a zone near the wall, called laminar sublayer, in which the velocity
is small and as well the local Reynolds number. In the laminar sublayer the turbulent viscosity is
neglected and we have

�=�
duB
dy

that is expressed in the dimensionless form introducing the friction velocity u∗ =√
�|y=0/�. As

the stress is constant across the boundary layer, we have

uB
u∗

= �u∗y
�

On the other hand, in the turbulent region we may approximate �t=��yu∗, � being the Von
Karman constant, and integrating (8) we have

uB
u∗

= u0
u∗

+ 1

�
ln

(
y

y0

)

where y0 is the width of the laminar sublayer and u0 the value of the velocity at this point. Defining
the dimensionless velocity u+

B =uB/u∗ and distance y+ =�yu∗/� and taking y+
0 =11.6 the final

solution reads

u+
B =

⎧⎨
⎩
y+ if y+ < y+

0

1

�
ln(y+)+5.5 if y+�y+

0

In the same manner, integrating (7) we arrive at

ϑ+
B =

⎧⎪⎨
⎪⎩
Pry+ if y+<y+

0

Pr t
[
1

�
ln(y+)+P�

]
if y+�y+

0
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THERMAL COUPLING OF FLUIDS AND SOLIDS 1189

where Pr :=��/� is the Prandtl number, Pr t is the turbulent Prandtl number (which is part of
the constitutive model), P� a function that gives the temperature jump across the laminar sublayer
and the dimensionless temperature is defined as

ϑ+
B =−�cpu∗

q
(ϑ−ϑB|�SB)

2.3.2. Strong form of the problem. Having an analytical solution to the problem in the boundary
layer domain we can rewrite the complete problem in terms of two subdomains, the fluid (excluding
the boundary layer) and the solid. To this end, let us remark that the solution of the thermal
problem obtained using the wall function method is a constant heat flux and therefore

q=nS ·qS|�SB =−nB ·qB|�SB =nB ·qB|�BF =−nF ·qF|�BF

This flux is proportional to the temperature jump across the layer

q=	(ϑB|�BF −ϑB|�SB)=	(ϑF|�BF −ϑS|�SB)

where

	= �cpu∗
ϑ+

and ϑ+ =ϑ+
B (�+) is defined in terms of �+, the dimensionless boundary layer thickness. This

parameter depends, finally, on the particular choice of the turbulent viscosity and conductivity
of the wall function method. In the same manner, as the tangential stress is constant across the
boundary layer, we have

t|�SB = t|�BF =
vF|�BF

for a certain parameter 
, and the normal component of the velocity is set to zero

n·vF|�BF =0

We can finally state the strong form of the problem as finding ϑS and ϑF, as well as uS and vF,
such that

�ScpS�tϑS+∇ ·qS=QS in �S×(0, tf)

−∇ ·rS=�g in �S×(0, tf)

and

�ScpS(�tϑF+vF ·∇ϑF)+∇ ·qF=QF in �F×(0, tf)

�S(�tvF+vF ·∇vF)−∇ ·rF=�g in �F×(0, tf)

and now the interface conditions become

t|�BF =
vF|�BF

nF ·vF|�BF =0

nS ·rS|�SB =0
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and

q = nS ·qS|�SB =−nB ·qB|�SB =nB ·qB|�BF =−nF ·qF|�BF

= 	(ϑB|�BF −ϑB|�SB)=	(ϑF|�BF −ϑS|�SB)

Finally, assuming the boundary layer to be thin, we can express the final approximation as

q = nS ·qS|�SF =−nF ·qF|�SF

= 	(ϑF|�SF −ϑS|�SF)

which is a surface-convection-type boundary condition. As in [4], we have derived an expression
for 	 based on the physical model being used (with a completely different meaning with respect
to the mentioned reference).

2.3.3. Weak form of the problem. Using the notation of the previous subsection, the weak form
of the problem consists in finding

ϑS∈L2(0, tf;V ϑ
S )∩L∞(0, tf; L2(�S))

ϑF∈L2(0, tf;V ϑ
F )∩L∞(0, tf; L2(�F))

such that

aS(ϑ,v)−〈kSnS ·∇ϑS,v〉�SF = l(v) ∀v∈V 0
S

aF(ϑ,v)−〈kFnF ·∇ϑF,v〉�SF = l(v) ∀v∈V 0
F

kFnF ·∇ϑF|�SF =	(ϑF|�SF −ϑS|�SF) on �SF

kFnF ·∇ϑF|�SF =−kSnS ·∇ϑS|�SF on �SF

Comparing the weak form of this problem to (4) the only difference is a jump on the temperature
proportional to the heat flux between domains. Our derivation allows us to give an interpretation
to the surface convection coefficient 	 in terms of the wall function model used on the boundary
layer subdomain.

3. NUMERICAL APPROXIMATION

Three different continuous problems have been described in Section 2 but the first one, that consists
of the solution of a global problem in the whole domain, was presented to define the problem we
are facing and has not been actually implemented. The other two possibilities imply the solution
of local thermal problems as well as local mechanical problems for the fluid and the solid. In this
section we present the numerical approximation to the problem and we will concentrate on the
thermal problem only. In the first subsection we will present the finite element discretization of the
problem considering generically the domain �. This approximation could be applied on the whole
domain but will be actually applied on each subdomain. A similar scheme is used to solve the
mechanical problem on the fluid. Details on the finite element approximation to the Navier–Stokes
equation can be found in [5–7]. In the second subsection we describe an iterative strategy to solve
the global thermal problem iteratively solving local problems on each subdomain.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1181–1201
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THERMAL COUPLING OF FLUIDS AND SOLIDS 1191

3.1. Finite element approximation

The Galerkin finite element approximation of this problem is standard. Based on a partition of the
domain Ph ={K } in nel elements K , the space V ϑ where the temperature is sought is approximated
by a finite-dimensional space V ϑ

h (built using polynomials). If the space of test functions V 0 is
approximated by V 0

h , defined in a similar manner, the semi-discrete problem consists in finding
ϑh ∈L2(0, tf;V ϑ

h ) such that

a(ϑh,vh)= l(vh) ∀vh ∈V 0
h

It is well known that this formulation is unstable when the convection dominates and therefore
we employ a stabilized finite element formulation based on the subgrid scale method with an
algebraic approximation to the subscales [8]. Details of the formulation are given in [6]. Only the
final discrete problem will be presented here.

The time discretization of the problem will be performed using the generalized trapezoidal rule,
that is to say, a finite difference scheme. Let us consider a uniform partition of the time interval
(0, tf) of size �t and let us introduce the following notation:

f n+� =� f n+1+(1−�) f n

�t f
n =( f n+1− f n)/�t=( f n+�− f n)/(��t)

where 0<��1. For �=1 we obtain the backward Euler scheme of first order, and for �= 1
2 the

Crank–Nicolson scheme of second order. Both are unconditionally stable. Let us define

ah(ϑn+1
h ,vh) =(�n+�cn+�

p �tϑ
n
h,v)�+(�n+�cn+�

p vn+� ·∇ϑn+�
h ,v)�+(kn+�∇ϑn+�

h ,∇vh)�

+(�n+�cn+�
p �t ϑ̃

n
,vh)�−∑

K
(�n+�cn+�

p vn+� ·∇vh+kn+�∇2vh, ϑ̃
n+�

)K

where ϑ̃
n+1

is given by (see [6] for details)
• quasi-static subscales:

ϑ̃
n+� ≈�n+�Rn+�

h

• dynamic subscales:

�n+�cn+�
p �t ϑ̃

n+�−1ϑ̃
n+� = Rn+�

h

The parameter � appearing in these expressions is given by

�=
[
c1

k

h2
+c2

�cp‖v‖
h

]−1

The fully discrete problem consists of: For n=1,2, . . . , find ϑn+1
h ∈V ϑ

h such that

ah(ϑn+1
h ,vh)=〈qn+�,vh〉�+〈qn+�

N ,vh〉�ϑ
N

∀vh ∈V 0
h
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3.2. Coupling strategy

As mentioned before, we consider a geometric domain decomposition of the problem by means
of a non-overlapping subdomain approach. Therefore, at each time step, we expect to construct
the solution of the problem from the solution of local problems for the fluid and the structure
using the interface conditions already described. This is carried out by iteratively solving local
problems on each domain until convergence on the interface conditions is satisfied, that is to say,
we use an iteration-by-subdomain strategy [9]. The choice of the boundary conditions of the local
problems should be such that the interface conditions presented in Section 2 are satisfied when
convergence is achieved. It is well known from the theory of domain decomposition methods that
in the case of non-overlapping subdomains we can choose Dirichlet–Neumann (Robin), Neumann
(Robin)–Dirichlet or Robin–Robin. Let us define ahS and ahF in the same manner as ah was defined
in the previous subsection.

If we use the full resolution strategy and apply Dirichlet boundary conditions to the solid and
Neumann boundary conditions to the fluid, which according to Giles and Roe et al. [10, 11] is the
most stable option, the coupling algorithm can be expressed as: For each time step n and each
iteration i find ϑn+1,i+1

S,h ∈V ϑ
S,h and ϑn+1,i+1

F,h ∈V ϑ
F,h such that

ahS(ϑn+1,i+1
S,h ,vh)=〈Qn+�,vh〉�+〈qn+�

N ,vh〉�ϑ
N

(9)

ahF(ϑn+1,i+1
F,h ,vh)=〈Qn+�,vh〉�+〈qn+�

N ,vh〉�ϑ
N
−〈kSnS ·∇ϑn+1,i

S,h ,vh〉�SF (10)

where vh ∈V 0
S,h in (9) and in vh ∈V 0

F,h in (10). Now it is understood that these spaces, V 0
S,h and

V ϑ
S,h , are constructed including �SF in the Dirichlet part of the boundary in order to satisfy

ϑn+1,i+1
S,h =ϑn+1,k

F,h on �SF

We can take k= i+1 or k= i . In the first case, the solution of this problem is sequential, that is,
we solve first for the fluid and then for the solid, whereas in the second one it can be parallel.

If we use the wall function strategy, the coupling algorithm can be expressed as: For each time
step and each iteration i find ϑn+1,i+1

S,h ∈V ϑ
S,h and ϑn+1,i+1

F,h ∈V ϑ
F,h such that

ahS(ϑn+1,i+1
S,h ,vh)=〈Qn+�,vh〉�+〈qn+�

N ,vh〉�ϑ
N
+〈	(ϑn+1,i+1

S,h −ϑn+1,i
F,h ),vh〉�SF (11)

ahF(ϑn+1,i+1
F,h ,vh)=〈Qn+�,vh〉�+〈qn+�

N ,vh〉�ϑ
N
+〈	(ϑn+1,i+1

F,h −ϑn+1,k
S,h ),vh〉�SF (12)

where vh ∈V 0
S,h in (11) and in vh ∈V 0

F,h in (12). Again we can take k= i+1 or k= i .
Apart from the fact that the physical models represented by Systems (9)–(10) and (11)–(12) are

different, some conceptual differences have to be remarked. First, it is observed that the imposition
of the transmission conditions is ‘symmetric’ for the fluid and the solid, contrary to the Dirichlet–
Neumann conditions in (9)–(10). Secondly, (11)–(12) does not require the calculation of the normal
heat fluxes from the solid to the fluid, as needed in (10). This calculation is always involved in
a finite element code, particularly for non-matching meshes between the fluid and the solid (see
the following section). Finally, in the limit 	→∞ it can be shown that the solution of System
(11)–(12) converges to the solution of System (9)–(10), the convergence rate being 	−1. This can
be proved using the analysis developed in [12]. Nevertheless, in our approach 	 has a physical
meaning and, moreover, taking 	 large leads to ill-conditioning problems.
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4. IMPLEMENTATION ASPECTS

4.1. A master–slave algorithm

One important point of the iteration-by-subdomain strategy proposed is that we already had
programs that solve the fluid dynamics problem and the structural problem. Then a master/slave
algorithm was implemented by developing a third code (the master code) in order to control the iter-
ative process. The MPICH2 library, an implementation of the MPI-2 standard, provides functions
for process communications that are used to interchange the data needed to apply boundary condi-
tions on each dedicated (slave) code. Some minor modifications on these codes are needed in order
to exchange data with the master. In order to perform a calculation, input data for each subproblem
needs to be generated and the master code starts the calculation by starting the slave process (this is
only possible under MPI-2 standard). During the calculation, the master code needs to define the
boundary conditions to be applied on each subproblem. The situation is illustrated in Figure 3.

4.2. Boundary data interpolation

Another aspect of the implementation that deserves a comment is the interpolation of the boundary
conditions to be applied in one subdomain from the results obtained in the other subdomain. For
each interface node, this interpolation is performed to find, in the mesh of the other subdomain,
the element in which it is located, the so-called host element. The process is illustrated in Figure 4.

The element search strategy used in this study [9] is based on a quad-tree (oct-tree in three
dimensions) algorithm. It consists of two steps: the preprocess in which a tree-like structure is built
and a process in which the search is performed. In the preprocess, the host computational domain is
embedded in a box taking the maximum and minimum nodes coordinates to define its coordinates.
This box is then subdivided recursively into four boxes (eight boxes in three dimensions) until each
box contains a prescribed (small) number of elements. Once this preprocess has been performed,
the process to search the host element of a given point is faster. Given the test point coordinates

Figure 3. Master–slave implementation.
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Figure 4. Boundary data interpolation.

x we recursively locate the boxes it belongs to and we find a small number of elements in which
the point must be. Then on each element we perform a local coordinates test. If the coordinates
on the parent domain of the standard isoparametric mapping are denoted by n, we have

x=∑
a
Na(n)xa

and starting with x we solve this equation for n using a Newton–Raphson procedure. The solution
permits us to determine whether the point belongs to the element and whether it is the case we
already have the shape functions on the host mesh evaluated at that point. They are then used to
interpolate the needed boundary data.

5. NUMERICAL EXAMPLES

In this section we present two numerical examples. The first one is a very simple one-dimensional
example intended to show the role played by the wall function approach when very thin boundary
layers are created. The second example is a practical application of the thermal coupling described
in this article.

5.1. A one-dimensional example

Assume that we have two different materials F and S on domains �F=[−1,0] and �S=[0,1],
with conductivities kF and kS, respectively, defined by

kF=C
1−e−�

1−e−� +�e�x

kS=C
1−e−�

1−e−� +�e−�x
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Figure 5. Thermal conductivity.

where C and � are constants. Both coefficients have a boundary layer near x=0 and the constant
� is a measure of the boundary layer width. The coefficients are shown in Figure 5 for �=10 and
�=100 and C=1.

The problem can be expressed as

− d

dx

(
kF

dϑ

dx

)
=QF in �F

− d

dx

(
kS

dϑ

dx

)
=QS in �S

with the transmission conditions

−kF
dϑ

dx
=−kS

dϑ

dx
at x=0

ϑF(0)=ϑS(0)

and the boundary conditions

ϑF(−1)=1

ϑS(1)=0

The exact solution to this problem is

ϑF(x)= 1

2

(
−x+ 1−e�x

1−e−�

)

ϑS(x)= 1

2

(
−x− 1−e−�x

1−e−�

)

We have solved this problem in the case of �=100 using the first domain decomposition strategy
using three different meshes of 10, 20 and 40 elements. The solution is compared with the analytical
solution in Figure 6. We have also solved this problem using the second approach using a mesh
of 10 elements and the result is compared with the one obtained by the previous method and with
the analytical solution in Figure 7. We note that using the first strategy, a better solution can be
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Figure 6. Finite element solution obtained using domain decomposition with two subdomains and meshes
of 10, 20 and 40 elements compared with the analytic solution.
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Figure 7. Finite element solution obtained using domain decomposition with two subdomains (DD1), with
two subdomains and second-order interpolation of the normal fluxes (DD1H) and with three subdomains

(DD2) compared with the analytical solution.

obtained if a second-order approximation of the normal derivatives is made, which implies the
need of building an appropriate extrapolation as shown also in Figure 7. This is not a simple task
in general domains with unstructured grids.

In any case, it is clear that the second method gives much better results in the case of a coarse
discretization. The accuracy of this approach depends on the choice of the coefficient 	. The
optimal value used here is found noting that, when �→∞, the exact solution tends to

ϑF(x)=− 1
2 x+ 1

2

ϑS(x)=− 1
2 x− 1

2

and the conduction coefficients tend to 1 (except at x=0 where both are 0) from where we obtain
	= 1

2 .

5.2. A fire in a tunnel

A fire is a complex phenomenon whose detailed simulation involves many different aspects that
we are not considering in this study. Here we have used a simple model that considers the fire as
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Figure 8. Velocity field at t=180s for Q=1.25MW/m3 (top) and Q=4.0MW/m3 (bottom).

a source of heat, without taking into account the exact reactive mechanism, as this would imply a
precise knowledge of the chemical components of the fuel. The heat released during a fire, which
is between 1 and 100MW, is partially dissipated by the flow and partially transported toward the
concrete structure where it is finally dissipated. Thus, the heat transfer involves both the behavior
of the fluid inside the tunnel and the structural behavior of the concrete and it is therefore necessary
to solve a coupled problem.

We solve the problem using the low Mach number approximation to the compressible flow
equations. This model takes into account the compressibility of the fluid but removes the acoustic
modes [13]. Unlike the Boussinesq approximation, strong temperature and density gradients are
allowed. The numerical treatment of the low Mach number equations is described in [14].

The high Reynolds number of the problem implies the need of taking turbulence into account.
We do this by introducing a Smagorinsky eddy [15], which is defined as

�t=�cs�
2[e′(u) :e′(u)]1/2

where cs is an empirical constant, � a characteristic length usually taken as the mesh size and
e′(u) is the deviatoric part of the rate of deformation tensor. A subgrid thermal conductivity is
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Figure 9. Temperature field at t=180s for Q=1.25MW/m3 (top) and Q=4.0MW/m3 (bottom).

also added. It is defined in terms of the subgrid viscosity as

kt= �tcp
Pr t

where Pr t is the turbulent Prandtl number, which is assumed to be constant (and taken to be 0.5).
Two simulations were carried out considering heat sources of 10 and 30MW, which correspond

to a small size fire (a car, for example) distributed in a volume of 8m3. Based on experimental
results, a typical wind in a tunnel in the absence of fire has a velocity of about 0.5m/s. A
preliminary calculation was performed to reproduce the initial state of a wind flowing through
the tunnel, which was obtained applying a pressure difference between the tunnel inlet and outlet.
On the tunnel walls Neumann boundary conditions based on universal profiles were applied (wall
laws). Boundary conditions for temperature were defined to reproduce the real situation as close as
possible. On the tunnel walls a Robin-type condition as in (11)–(12) was applied using a convection
coefficient suggested by laboratory experiments and the temperature on the concrete walls was
fixed. On the entrance and exit of the tunnel, Neumann boundary conditions were considered.
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Figure 10. Divergence of the velocity field at t=180s for Q=1.25MW/m3

(top) and Q=4.0MW/m3 (bottom).

The physics of the flow is quite complex and the temporal evolution is chaotic. When the heating
starts, strong buoyancy forces determine the formation of a plume and recirculation zones that
now, in contrast to the previous example, are fully tridimensional and of complex structure. In
Figure 8 the velocity field at 3min after the starting of the heating is shown and in Figure 9 the
corresponding temperature field is shown. Both figures show a detail of the fire zone introducing
cutting planes that intersect the fire zone. The heat source generates the plume that can be clearly
observed in Figure 8, where an expansion of the flow is also apparent. This expansion is better
shown in Figure 10, where contour lines of divergence of the velocity are shown. They have been
obtained by projecting velocity gradients on the finite element space.

In both calculations we used a time step �t=1s. The nonlinear equations describing the flow
are solved using two nested loops, an external global loop and internal loops for the momentum
equations and for the temperature equation (which is non-linear in the low Mach number case
because of the dependence of the density on the temperature). The external loop is also used to
account for the domain decomposition coupling. A maximum number of 5 iterations in the external
loop were performed with a convergence tolerance of 10−3 for the velocity and of 10−4 for the
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temperature. In most steps, 3 iterations were enough to achieve convergence and only in few
steps the temperature residual after 5 iterations was around 0.2×10−3 (the velocity residual was
always under the prescribed tolerance). The linear system has been solved using a GMRES [16]
preconditioned using an ILUT strategy described in [17]. As pointed out in [14], this technique is
effective when large time steps are used.

6. CONCLUSIONS

In this article, we have described different aspects related to the numerical approximation of the
thermal coupling between a fluid and a solid. Our basic strategy has been to pose the problem
in a domain decomposition framework. This has allowed us to propose two alternatives to treat
the interface coupling, namely, a classical one considering a perfect thermal contact (continuity
of temperatures and heat flux) and another one based on the use of wall functions, which leads
to a heat flux proportional to the temperature jump between the fluid and the solid. This surface-
convection-like transmission condition depends on a coefficient to which we have given a new
expression in terms of the parameters of the wall function approach. When this coefficient increases
the perfect thermal contact condition is recovered.

We have also discussed the iteration-by-subdomain strategy we have implemented using a
master–slave strategy. Again, the domain decomposition framework turns out to be crucial to
formulate this (otherwise standard) iterative strategy.

From the practical point of view, we have found that the algorithmic framework presented here
is very handful, easy to implement once the basic dedicated codes are available and, what is more
important, robust (in accordance with results known from the literature). An application example
of the overall formulation has been presented.
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